Numerical Differentiation and
Integration

« Standing in the heart of calculus are the mathematical concepts
of differentiation and integration:

Ay _ T(x+Ax)—T(x)

AX AX
ﬂ:Ax lim, f(x +Ax)—f(x)
dx AX

I:_Tf(x)dx
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Figure PT6.1
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Figure PT6.2
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Noncomputer Methods for
Differentiation and Integration

* The function to be differentiated or integrated
will typically be in one of the following three
forms:

— A simple continuous function such as polynomial,
an exponential, or a trigonometric function.

— A complicated continuous function that is difficult
or Impossible to differentiate or integrate directly.

— A tabulated function where values of x and f(x) are
given at a number of discrete points, as Is often the
case with experimental or field data.

Chapter 21 4
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Figure PT6.4
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Figure PT6.7
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Newton-Cotes Integration Formulas
Chapter 21

e The Newton-Cotes formulas are the most common
numerical integration schemes.

e They are based on the strategy of replacing a
complicated function or tabulated data with an
approximating function that is easy to integrate:

| = jl f (x)dx ;i f (x)dx

a

f (x)=a,+ax+---+a X" +a X"

Chapter 21
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Figure 21.1
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Figure 21.2

0

A

7

J(x) 4

Chapter 21



The Trapezoidal Rule

e The Trapezoidal rule is the first of the Newton-Cotes
closed integration formulas, corresponding to the
case where the polynomial is first order:

| = j f (x)dx j f,(x)dx

e The area under thls first order polynomial is an
estimate of the integral of f(x) between the limits of a
and b:

| =(b—a) f (a); f(b) } Trapezoidal rule

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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_fm'c integration, Eq. (21.2) can be expressed as

fib) — f{a)x + fla)— af(b) — af(a)

£ -I-fll{.t] = b a b a

F) = f{b; - f(a) _— bfla) — af(a) — af(b) + afla)

—-a b—a

-:__- fitx) = ﬂ'b; — fla) 4 bf(a) — af(b)

-a b-—a

ich can be integrated between x =a and x = b to yield
LSS 2 bf@ —af) f

g y—a 2 b —a

This result can be evaluated to give

_ fib) — fla) (&* —a®) = bfla) —af(b)

/ +

b—a 2 b—a
Now, since b* — a>=(b —alb + a),

b
I =[fb) - fla) -;-a + bf(a) — afib)
Muluplying and collecting terms yields
I = {b —a) M

which is the formula for the trapezoidal rule.

Chapter 21
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Figure 21.4
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Error of the Trapezoidal Rule/

 When we employ the integral under a straight line

segment to approximate the integral under a curve,
error may be substantial:

1

E, = 1o f"($)(b—a)

where & lies somewhere in the interval from a to b.

Chapter 21 13
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FIGURE 21.6
Graphical depiction of the use of a single application of the rapezoidal rle to approximate th
integral of f{x) = 0.2 + 25x — 2002 + 675:3 — Q00x* + 400> from x =0 1 0.8.
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Single Application of the Trapezoidal Rule
Problem Statement. Use Eq. {21.3) to numerically integrate

flx) = 0.2 +25x ~200x” + 675x> — 900x* + 400x°

from @ = 0 to b = 0.8. Recall from Sec. PT6.2 that the exact value of the integral

determined analytically to be 1.640533.

Solution. The function values

f(0)=02
£(0.8) = 0.232

can be substituted into Eq. (21.3) to yield

0.2 +0.232
1 ’:"U,S—-—-z-—— =0.1728

which represents an error of

E, = 1640533 — 0.1728 = 1.467733

Chapter 21
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The Multiple Appiication Trapezoidai Ruie/

e One way to improve the accuracy of the trapezoidal rule is to
divide the integration interval from a to b into a number of
segments and apply the method to each segment.

« The areas of individual segments can then be added to yield
the integral for the entire interval.

_b-a

" n

h a=X, b=x

n

I ::T'f(x)dx-+T'f(x)dX4~--+ T'f(x)dx

Substituting the trapezoidal rule for each integral yields:
_ f(xo)g T4, f(xl); %) h f(xn1)2+ f(X,)

16
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or, grouping terms,

[f(xu) +2 i flxi) + f(x,;)] '

i=l

-ﬁzﬂﬁ&} + ﬂxs)

l‘f-qt".l *c'-hv-r*-u-n-

(21.10)

Because the summation of the coefficients of f(x) in the numerator divided by 2x is equal
to 1, the average height represents a weighted average of the function values. According to

Eq. (21.10), the interior points are given twice the weight of the two end points f(xg) and
f(za-

An error for the multiple-application trapezoidal rule can be obtained by summing the
individual errors for each segment to give

_ (b-a)
E, =— o ; FUED (21.11)




flx)

f(x)

fix)

I X "EH & &K ‘:j.
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FIGURE 21.7 2
ustration of the multiple-application trapezoidal nle. (o) Two segments, [b] three segments, ™%

] four segments, and (d} five segmenis. £
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Figure 21.8
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{a) Single-segment (b) Muitiple-segment

FUNCTION Trap (h, f0, f1) FUNCTION Trapm (h. n, f)
Trap = h = (fO + f1)/2 sum = fy
END Trap 00FOR i = 1, n = 1
sum = sum + 2 * f;

END DO

sum = sum + f,

Trapm = h + sum /2
END Trapm

FIGURE 21.9
Algorithms for the (o] single'segment and (b] mult iple segment trapezoidal rule.




Simpson’s Rules

* More accurate estimate of an integral Is
obtained If a high-order polynomial is used to
connect the points. The formulas that result

from taking the integrals under such
polynomials are called Simpson’s rules.

Simpson’s 1/3 Rule/

e Results when a second-order interpolating
polynomial Is used.

Chapter 21
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Figure 21.10
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D ey T

f (x)dx ;_T f, (x)dx

a=x, b=x,

IZT (X_Xl)(X_XZ) f(X )+ (X_XO)(X_XZ) f(X)+ (X_XO)(X_Xl) .I:(
X (Xo_xl)(xo_xz) ’ (Xl_XO)(Xl_XZ) ' (Xz_xo)(xz_xl)

h _b-a
=3[ 00)+4T00)+ F00)]  h==

i
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After integration and algebraic manipulation, the following formula results:

1= ;[ﬁxo}+4ﬂxl}+.ﬂtz)]

Simpson’s 1/3 rule can also be expressed using the format of Eq.

j"}:w%f} %ﬁxzj

7 "‘"(3 md_w T _
‘—\‘H.-l""
L 1#_ % T *_ £ ww .

It can be shown that a single-segment application of Simpson’s 1/3 rule has a trunca-
tion error of (Box 21.3)

= 1w
Ei= —goh O ®)

or, because h = (b — a)/2,

(21.16)




EXAMPLE 21.4

Single Application of Simpson’s 1/3 Rule
Problem Statement. Use Eq. (21.15) to integrate

f(x) = 0.2+ 25x — 200x” + 675x° — 900x* + 400x>
from a = O to b = 0.8. Recall that the exact integral is 1.640533.
Solution.

flo)y=02  f(0.4) = 2.456 f(0.8) =0.232
Therefore, Eq. (21.15) can be used to compute

’ 20.80'2 + 4[2.4215] + 0.232 1367467

which represents an exact error of

E, =1.640533 - 1.367467 = 0.2730667 & = 16.6%

which is approximately 5 times more accurate than for a single application of the trape-

zoidal rule (Example 21.1).

Chapter 21
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21.2.2 The Multiple-Application Simpson’s 1/3 Rule

Just as with the trapezoidal rule, Simpson’s rule can be improved by dividing :
tion interval into a number of segments of equal width (Fig. 21.11):

b—-a

n

h =

The total integral can be represented as

;:f'fcx)d.r+f *fcx>d.r+---+f" fx)dx

Substituting Simpson’s 1/3 rule for the individual integral yields
Sflxo) + 4 flxy) + flx2) +2h Sflx2) +4f(x3) + flxs)

= 2h
! 6 6
+_”_+2hf(xn—3)+4f[1n—l)+f(xn) .:
6
-l
or, combining terms and using Eq. (21.17), =
n—1 n—2 f‘,
flxo) +4 D fx)+2 D fx) + flxa)
] = {b _ {1]. i=1.1.5 j=2.4.6 t':
3n
S e e g -
Widrh Average beight :
Chapter 21
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An error estimate for the multiple-application Simpson’s rule is obtained in the same
fashion as for the trapezoidal rule by summing the individual errors for the segments and
averaging the derivative to yield

v ey a)’ F(4)

e 21.19
- (8on* 1 G

FIGURE 21.11

Graphical representation of flx)
the multiple application of

Simpson’s 1/3 rule. Note that

N
the method can be employed

only if the number of segments
is even.

777772
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EXAMPLE 21.5

Multiple-Application Version of Simpson’s 1/3 Rule
Problem Statement. Use Eq. (21.18) with n = 4 to estimate the integral of

fx) =0.2 + 25x — 200x” + 675x> — 900x* + 400x>
from a = O to & = 0.8. Recall that the exact integral is 1.640533.
Solution. n=4(h=02):

f(0) =0.2 f(0.2) = 1.288
f(0.4) =2.456 f(0.6) = 3.464
J(0.8) =0.232

From Eq. (21.18),

[ =08 0.2 + 4(1.288 + 3,46142] + 2(2.456) + 0.232 = 1623467

E, = 1.640533 — 1.623467 = 0017067 ¢, = 1.04%

The estimated error [Eq. (21.19)] is

_(08)3
180(4)*

(—2400) = 0.017067

a:

Chapter 21 28
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21.2.3 Simpson’s 3/8 Rule

In a similar manner to the derivation of the trapezoidal and Simpson’s 1/3 .~':'I
order Lagrange polynomial can be fit to four points and integrated:

b it
I = .[ flx)dx = f fa(x) dx
to yield

rx [f(Io) + 3 f(x1) + 3 flx2) + f(x3)]

3/8. It is the third Newton-Cotes closed integration formula. The 3/8 rule can
pressed in the form of Eq. (21.5):

f 5’ (b % fl'Iu] + 3ff11) + 3ﬂ»1'1] + f(xa)
,'_,L 1 =3 )
Width .Hm:mgc height

we1ghted with one-eighth. Simpson’s 3/8 rule has an error of

3
E, = ——R (&)

or, because h = (b — a)/3,

_‘?{.;T .-_.__(b a) f“’{E}.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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kole opplications with odd
b intervals.
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EXAMPLE 21.6

Simpson's 3/8 Rule
Problem Statement.
(a) Use Simpson’s 3/8 rule to integrate
flx) = 0.2 +25x — 200x? + 675x> — 900x* + 400x

froma =0tob =0.8.
(b) Use it in conjunction with Simpson’s 1/3 rule to integrate the same function for five
segments.

Solution.
(a) A single application of Simpson’s 3/8 rule requires four equally spaced points:

f0) =0.2 f(0.2667) =1.432724
f(0.5333) = 3.487177 f(0.8) =0.232

Using Eq. (21.20),
~ 0.2 + 3(1.432724 4 3.487177) + 0.232

=08 - = 1.519170
E. = 1.640533 — 1.519170 = 0.1213630 &, = 7.4%
(0.8)°

(—2400) = 0.1213630

a7 76480

Chapter 21 31
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(b) The data needed for a five-segment application (h = 0.16) is
f(0)=0.2 fl0.16) = 1.296919
f(0.32) =1.743393 f(0.48) = 3.186015
f(0.64) = 3.181929 f(0.80) = 0.232

The integral for the first two segments is obtained using Simpson’s | /3

2 +4{1.296919) 4 1.743
I =032 024 —% 3 393 = 0.3803237

For the last three segments, the 3/8 rule can be used to obtain

1.743393 4 3(3. 186015 + 3.181929) + 0.232
[ = 0.48 [ : )+ = 1.264754

The total integral is computed by summing the two results:

{ = 0.3803237 4 1.264753 = 1.645077
E, = 1.640533 — 1.645077 = —0.00454383 & = —0.28%

Chapter 21
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B0V Simpl3 (h, f0, f1, f2)

§I0N Simp38 (h, f0, f1, f2, 3)
B0 38 = 3xhe (FO+3+(F1+F2)+F3) / 8

:Iﬂﬁ' Simpl3m (h, n, f)
fin = (0)

Bl = sum + 4 « oy + £,
fp13n = h * sum / 3

=y
FUNCTION Simpint(a.b.n, f)
h=1(b—-a)/n

IF n= 1 THEN

sum = Trap(h, fp-1, fa)
ELSE

m=n

odd=n/2—- INT(n/ 2)
IFodd = 0 AND n > 1 THEN

sum = sum+Simp38(h, fo-3. fa-2. fa-1. fa)

m=n-3
END [F
IFm> 1 THEN

sum = sum + Simpl3m(h,m, f)
END IF
END IF
Simp[nt = sum
END Simpint

Chapter 21
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21.3 INTEGRATION WITH UNEQUAL SEGMENTS

To this point, all formulas for numerical integration have been based on eq
data points. In practice, there are many situations where this assumption does g

we must deal with unequal-sized segments. For example, experimentally ,
often of this type. For these cases, one method is to apply the trapezoidal rule ¢y’ d%

ment and sum the results:

f(xu);f(xt}+h1f[xl};f(xz} +_._+hnf[-ru—|}2+ flx,)

I =h

(a)
FUNCTION Trapun (x, ¥, n)
LOCAL 1, sum
sum = 0
DOFOR i = 1. n
sum = sum + {(xi — xi-p)*(yiy + ¥iJi2
ENO 00
Trapun = sum
ENO Trapun
x
FIGURE 21.14
Use of the trapezoidal rule to determine the integral of unevenly spaced dota. Notice how the 34

shaded segmentscould be evaluated with Simpson's rule 1o atlain higher accuracy.




21.5 MULTIPLE INTEGRALS

Multiple integrals are widely used in engineering. For example, a general equation to com-
pute the average of a two-dimensional function can be written as (recall Eq. PT6.4)

d [
[ ([ f(x,.?}ﬂ‘r)d}’
F__ “C a (21.23)

I= (d —cXb—a)

The numerator is called a double integral.

FIGURE 21.16
Double integral as the area under the lunction sutface.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35



EXAMPLE 21.9  Using Double Integral to Determine Average Temperature

scribed by the following function:

T(x,y) =2xy+2x —x? ~2y" + 72

g '-‘.-.-L

e

l."-

.
2'

FIGURE 21 .17
Numerical evaluation of a double integral wing the two-segment trapezoidal rde.

Chapter 21
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FIGURE 22.1

Algorithms for multiple applicar
lions of the (@) trapezoidol and
(b} Simpson’s 1/3 rules, where
the functicn is available.

(a) (b)

FUNCTION TrapEq (n, a, b) FUNCTION SimpEq (n, &, b)
h=(b-a)/n h=(b—a)/n
Xx=a X =3
sum = f(x) sum = f(x)

DOFOR i =1, n—1 DOFOR i =1, n- 2, 2
X=x+h " R f i
sum = sum + 2 * f(x) sum = sum + 4 = f(x)
END DD X=X+h
sum = sum + f(b) sum = sum + 2 * f(x)
TrapEq = (b — aJ) + sum / (2 * n) END 0O
END TrapEq x=x+h

sum = sum + 4 * f(x)
sum = sum + f(b) 4
SimpEq = (b = a) » sum /(3 + pii
END Simpég o

Chapter 21 37
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22.2 ROMBERG INTEGRATION

The estimate and error associated with a multiple-application trapezoidal rule can be
represented generally as

I = I(h) + E(h)

where | =the exact value of the integral, /(h) = the approximation from an n-segment
application of the trapezoidal rule with step size h = (b — a)/n, and E(h) = the truncation
error. If we make two separate estimates using step sizes of k; and h; and have exact values
for the error,

{(h1) + E(hy) = I(hz) + E(h2) (22.1)
Now recall that the error of the multiple-application trapezoidal rule can be represented
approximately by Eq. (21.13) [withn = (b — a) / h]:

b—a ,-,

E=- h .
Tl (22.2)

Chapter 21
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If it is assumed that /" is constant regardless of step size, Eq. (22.2) can be -

mine that the ratio of the two errors will be

E(hi) . A}

E(hy) — h3

This calculation has the important effect of removing the term f" from the Computal
so doing, we have made it possible to utilize the information embodied by Eq. (229
out prior knowledge of the function’s second derivative. To do this, we rearrange Eg

1o give

W2

h
E(h)) = E“‘”(;T')
2/

which can be substituted into Eq. (22.1):

’ ,, 2

h L
Ithy) + E(hﬂ(h—' ) = Ithy) + Ehs)
2,

which can be solved for

I(hy) — I(hz)

E(h,) =
) T Gl

Chapter 21
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mates and their step sizes. This estimate can then be substituted into

I = I(h;) + E(hy)

to yield an improved estimate of the integral:

1
I = I(hy) + I(hy) — I(h
(h2) (hlfhﬂz—li (ha) — I(hy)]

Thus, we have combined two trapezoidal rule estimates of O(h?) to yield a new -
of O(h*). For the special case where the interval is halved (h, = h,/2), this eq

becomes

1]

2% —

or, collecting terms,

I = —.’(h;} - -‘*I(J‘I!}

Chapter 21
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EXAMPLE 22.1  Error Corrections of the Trapezoidal Rule

Problem Statement. In the previous chapter (Example 21.1 and Table 21.1), we used 3
variety of numerical integration methods to evaluate the integral of f(x) = 0.2+ 25F=:
200x% + 675x> —900x* + 400x> from a = Oto b = 0.8. For example, single and ™ T

applications of the trapezoidal rule yielded the following results:

Segments h integral ey Yo
1 0.8 0.1728 89.5
2 0.4 1.05688 34.9
4 0.2 1.4848 @35

Use this information along with Eq. (22.5) to compute improved estimates of the integral.

Solution. The estimates for one and two segments can be combined to yield
4 1
I= :—1(1,0633] - 5(0.1?23] = 1.367467

The error of the improved integral is E; = 1.640533 — 1.367467 = 0.273067 (¢, = 16.6%),
which is superior to the estimates upon which it was based.
In the same manner, the estimates for two and four segments can be combined to give

4 ]
F= 5(1.48518) - 1(1.0638] = 1.623467

which represents an error of E; = 1.640533 — 1.623467 = 0.017067 (&, = 1.0%).

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Equation (22.4) provides a way to combine two applications of the trapezoidal rule
with error O(h?) to compute a third estimate with error O(h*). This approach is a subset of
a more general method for combining integrals to obtain improved estimates. Forinstance,
in Example 22.1, we computed two improved integrals of O(h*) on the basis of three trape-
zoidal rule estimates. These two improved estimates can, in turn, be combined to yield an
even better value with O(#%). For the special case where the original trapezoidal estimates
are based on successive halving of the step size, the equation used for O(h®) accuracy is

16 1

I= —In— =1 (22.6)

15 15

where 7, and J; are the more and less accurate estimates, respectively. Similarly, two O(h®)
results can be combined to compute an integral that is O(h®) using

=

EXAMPLE 22.2

64 1

In — —1 (22.7)

63 63

Higher-Order Error Correction of Integral Estimates

Problem Statement. In Example 22.1, we used Richardson’s extrapolation to compute
two integral estimates of O(h*). Utilize Eq. (22.6) to combine these estimates to compute
an integral with O(h®).

Solution. The two integral estimates of O(k*) obtained in Example 22.1 we
and 1.623467. These values can be substituted into Eq. (22.6) to yield

1 |
[ = —12(1.62346?} - E“'%Mﬁ?) = 1.640533

which is the correct answer to the seven significant figures that are carried in thig o8 42
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22.2.2 The Romberg Integration Algorithm

I et r- "
[o——
|_:_- ~iE I -_l;-...'- o '.__F"_ .1 12 g
r‘I-lI - By "_':'_-:!-:- . -l-_-:r.:..'."' Lo -J:J-.I £

where /;.1.x-1 and [; ., = the more and less accurate integrals, respectively,
The index & signifies the level of the integration,
The index jis used to distinguish between the more (j + 1) and the fest§

(/) accurate estimates. For example, fork =2 and j = 1,

I, = ‘”1.:3—'1'|.1

Chapter 21 43
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FIGURE 22.3 O(h?) O(h*) o(h®) ot %

Graphical depiction of the i)

sequence of integral estimates o] 0.172800 ___.-—"—"‘"'; 1.367467 3;

generated using Romberg 1.068800 A

integration. (a) First iteration ) L

(b} Second iteration. (¢) Third (&) 0.172800 1.367467 _________'..' 1.640533 2

iteration, ]-DC’BEC’D.‘#’________; 1.623467 — -
1.484800

{c) 0.172800 1.367467 1.640533 ? 1.640533:

1068800 1623467 ———2 1 640533

1.484800 = 1.639467 — i

1.600800 —— '

i

For example, the first iteration (Fig. 22.3a) involves computing the one- and two-

segment trapezoidal rule estimates (/y,; and /5 ;). Equation (22.8) is then used to compute
the element 7, » = 1.367467, which has an error of O(h*).

Ik — Izt
16, = |[~E—"2%=11)00%
Ik
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FUNCTION Romberg (a, b, maxit, es)
LocaL I(10, 10) |
n=1
I; = Trapkg(n, a, b)
iter =0
00

iter = iter + 1
n = ziter
litersy,; = TrapEqQ(n, a. b)
O0FOR k = 2, iter + 1
J= 2+ iter -k
L= 0"t * Tjqay = Ijaer) ] (81 = 1)

END DO
%d?{:m ea = ABS((Iy stares — lz.ter) /| I1stare1) » 100
mfagm‘mﬂﬁmﬂw IF (iter = maxit OR ea = es) EXIT
ent version of END DO
ihe rapezoiddl rule from Romberg = I}, iter+1
Fig. 22.1. END Romberg




HIGH-ACCURACY DIFFERENTIATION FORMULAS

fie1) = fxd) + Flxh + i;iﬂhz .

which can be solved for

flxig)) — flxi) B F(x:)
h 2

Flx) = h + O(h*) (23.2)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative
terms and were thus left with a final result of

=L ('w}h_ 2+ o —

[n contrast to this approach, we now retain the second-derivative term by substituting
the following approximation of the second denvative [recall Eq. (4.24)]

J(xie2) = 2f(xie1) + f(xi)

h + O(h) (234)

f”(l’i) —

Chapter 21
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into Eq. (23.2) to yield

Fei) = feig1) — fi)  flxiga) - 25:;&1) + ), L oY)

h
or, by collecting terms,

— f(xiya) + 4 f(xiy1) — 3f(x:)

2,
h + O(h™)

flx) =




FIGURE 23.1 CSETE

Forward finitedivided-difference formulas: two versions are presented for each derivaive. The
latter version incorporates more terms of the Taylor series expansion and is, consequently,
accurate.

First Derivative

fl[&l = _ﬂxu-'ﬂ' + ‘d';}:ﬁ#l’ — 3“

Second Derivative
H&I" ﬂ&‘l‘l:‘_z:[.!lc:_.l]‘l'-‘w

Third Derivative
_ fixie3) = 3fixeal L 3fxiat) = Axil
h

il

P[Jq - _Sﬂ"-l-dj + 1 4&*34-_1' = 224‘[;[&*2] + ]B-ﬂ:‘ﬂrll = jﬂJd

Fourth Derwvotive
) = fixied — 4fx,e2) + 5:‘H+ﬂ = Afxi] + )

P = —2Mfxins) + 11 fixsa) = 24fxss) + 26fxaa) = 147x,00 + 3hx)
h




fvlor series expansion and s,
_'uenrh,r, more accurale.

First Derivative

i . h

SFI:):,] =

- Rx.1)

4flxi-1) + Ax_2)

Flx) =

2h

Second Derivative

o - =2l e
I Eﬂ:xl - S‘HJ{,_[] + dlr'x_*}ll - F[x;_3|
Mx) = 2

Third Derivolive

k-] + 3flx—a) = Ax-a)

‘,-.[}d 5 IIT-“fr] 4
g = S~

Fourth Derivative

fx) = fd —

h:!

laﬂ-ﬁ."’l] + 24fix,3) — 14Fxi_3) + 3f(x,—4)

2h’

dHxi—1) + -EJIFEJ:',_E] = df(‘:ijl + Fl:x,_:]

F'"":XJI =

3fx) -

h-l

1 Af|x-1) + 26Rx-2] = 24fx_3) + 1 1 Aixi—a) = 27ix.3)
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23.3

vered finite-divided-

ce formulas: two
ions are presented for each

Besivative. The lalter version

e
1 .'.
k _l
L | E
i
R
l-l.
=
o
.I:.
=
g -
oy
%’
e
ok
2
;:
iy
13

First Derivalve

2 Fix,o 1) = Ax:<1)

Fld 2h

_ —fixsal + Bfxia) — Bfxii) + fix_a)

Fixd 12h

Second Derivative

fixie1) = 2fx) + fixizi)
[¥]

Flxl =

—fxis 2 + 16f0x41) — 30flx) + 16fx—1) — Ax-2l

F ﬂl.'! = ] Ehz

Third Derivative

flxiea) = 2fx41] + 2fxiy) — Flx_2)
2h3

Flod =

~fxisq) +8FAxa2l = 13fx.1)+ 13fx. 1) — Bflxizg) + Flx,-3)

I{mlxil C ) 8 Il'lj

Fourh Derivative

Axieg] = AHxic1] + 6fx) — Aflx_y) + Fix,-2)

Il{nr1 x]h E ﬁ-‘l

_ —fxeal + 12fxiaa) + 39fa1) + 56fx) — 394(x 1) + 12fx-2) + Axi-a]

%)
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High-Accuracy Differentiation Formulas
Problem Statement. Recall that in Example 4.4 we estimated the derivative
flx) = —0.1x* - 0.15x° — 0.5x* — 0.25x + 1.2

at x = 0.5 using finite divided differences and a step size of h = 0.25,

Forward Backward Centered

O(h) O(h) O(h?)
Eshmate -1.155 -0714 -0.934
Er i) -26.5 21.7 -24

where the errors were computed on the basis of the true value of --0.9125. Repeat
putation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3,

Solution. The data needed for this example is

xi-2 =0 flxix) =12
%o, =025  flxioy) = 1.1035156
x; = 0.5 flx;) = 0.925
x;+ =0.75 flxie1) = 0.6363281
Xigz = 1 Axiy2) =02

The forward difference of accuracy O(h?) is computed as (Fig. 23.1)

-0.2 + 4(0.6363281) — 3(0.925)
F(0.5) = — = —0.859375 — 5.82%
f0-3) 2(0.25) o

The backward difference of accuracy O(h’) is computed as (Fig. 23.2)

: 3(0.925) — 4(1.1035156) + 1.2
0.5) = —= —0878125 & = 377%
f10-2) 2(025) © .

The centered difference of accuracy O(h*) is computed as (Fig. 23.3)

—0.2 + 8(0.6363281) — 8(1.1035156) + 1.2
12(0.25)

£10.5) = = 09125 & =0% %
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RICHARDSON EXTRAPOLATION

Recall from Sec.22.1.1 that Richardson extrapolation provided a means to obtain an
improved integral estimate { by the formula [Eq. (22.4)]

l
I =I(h) + ———— [i(hy) — Kh 2
(h2) {h.ﬂ:;]l—l[tﬂ (ht)] (23.6)
where [(h)) and I(h;) are integral estimates using two step sizes h; and h,. Because of its
convenience when expressed as a computer algorithm, this formula is usually wntten for
the case where h, = h/2, as in

4 1
= - I(hy) — = KA
I 3 (n2) 3 (A1) (23.7)
In a similar fashion, Eq. (23.7) can be written for derivatives as
4 1
D= imhﬂ - gn(hll (23.8)

For centered difference approximations with O(h*), the application of this formula will
yield a new derivative estimate of O(h*).
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Richardson Extropolation

Problem Statement. Using the same function as in Example 23.1, estimate the first
derivative at x = 0.5 employing step sizes of h; = 05 and h; = 0.25. Then use Eq. (23.8)
to compute an improved estimate with Richardson extrapolation. Recall that the true value
1s —0.9125.

Solution.  The first-derivative estimates can be computed with centered differences as

02-12

1 _110 E; = _96%

D(0.5) =

and

D(0.25) = %3632810-_51'1035156 = —0.934375 &= —24%

The improved estimate can be determined by applying Eq. (23.8) to give
D= %[—0,9343T5) -— %[—l} = —0.9125

which for the present case is a perfect resuit.
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Y Sflxien) — flx)

Xi+l — X

flx) = + O0(xip) — x)

flxi) = L + O(h)

\ff’{x‘) S ﬂxi) “hﬂxfﬂ-l) — vhfl

Jxisr) — flxiz1)
2h

- O(h%)

fxi) =




